
Institut Universitaire Technologique Calais-Boulogne
Département Génie Electrique et Informatique Industrielle

Stage report

Spark Generator Board
&

Path Finder Robot

Stage from 14 April to 19 June
1998

Student : Stephane ODUL
Responsible teacher : Mr Nickema
Supervisor : Dr K.R. Dimond

3

ACKNOWLEDGMENT

First of all I would like to thank Dr K.R. Dimond, who welcomed me to the Electronics
Laboratory during these 10 weeks.

I would also like to thanks Mr John Bevan, Mathematician at the Canterbury Business
School who introduced me to Dr K. R. Dimond.

Moreover, I would like to thank Mr Harvey Twyman for showing me how the
development tools worked, and for his technical assistance in my projects.

I would like to thank all the staff who provided me with the necessary for those projects.

Finally, I would like to thank Miss Emanuelle Andre who give me the opportunity to do
my work placement in England.

4

CONTENTS

Introduction .. p. 5
Presentation of the Electronic Laboratory .. p. 6

1. Introduction to VHDL ... p. 7
1.1. Presentation of VHDL ... p. 8
1.2. Example in VHDL : PPM emitter and PPM receiver p. 9

1.2.1.The PPM signal ... p. 9
1.2.2. The PPM emitter... p. 9
1.2.3. The PPM receiver ... p. 10
1.2.4. Linking the components together... p. 12

1.3. Testing the PPM system .. p. 13
1.3.1. The Max+PlusII environment.. p. 13
1.3.3. The testing board .. p. 14

2. The Spark Generator Board ...p. 15
2.1. Study of the Spark Generator ... p. 16

2.1.1 What is a Spark Generator ? .. p. 16
2.1.2. Tests with the 68HC11 ... p. 16
2.1.3. Implement the spark for VHLD... p. 18

2.2. The Spark Generator in VHDL .. p. 20
2.2.1. The components.. p. 20
2.2.2. The main component... p. 20

2.3. The Spark Generator Board ... p. 21

3. The Path Finder Robot ..p. 22
3.1. Study of the Path Finder Robot .. p. 23

3.1.1. The purpose of the robot ... p. 23
3.1.2. The Finate State Machine (FSM) .. p. 24
3.1.3. Choice of the hardware ... p. 24

3.2. The VHDL part ... p. 25
3.2.1. The components.. p. 25
3.2.2 The main component.. p. 26

3.3. The physical part ... p. 27

Conclusion ... p. 29
ANNEXES.. p. 30

5

INTRODUCTION

At the end of our two year course we were required to carry out a work experiment
lasting ten weeks to conclude our studies. I chose to do my experiment in England, in the
.Electronic Engineering Laboratory of the university of Kent at Canterbury.

My experiment is based on the use of the VHDL language and consist of two main
projects, a Spark Engine Generator and a Path Finder Robot.

At first I spent two weeks to be familiar with the VHDL, by completing a project based
on the Pulse Position Modulation serial transmission.

The Spark Engine Generator can be used in car engines and provides a more efficient
explosion of the petrol. This project takes 3 weeks to complete, and worked without any
noticeable trouble.

The Path Finder Robot is a good introduction to robotics and stand-alone tools. After five
weeks of development this project still have some possible necessary improvements.

I hope you enjoy reading my work which describes various steps of the project.

6

Presentation of the Electronic Laboratory of the University of
Kent at Canterbury

The University was founded 35 years ago.

Electronic Engineering Laboratory founded 30 years ago.

The department has over 20 full-time academic staff, and approx 24 full-time research
staff. Funded by research councils and industry.

The department offers a number of undergraduate courses, electronic engineering,
communication engineering, electronics and medical electronics, electronic system
engineering and computer system engineering. In addition there is a masters course in
communication systems engineering.

Student numbers are approx 300 full-time undergraduates and 50 postgraduates, taught
courses and research, and 8 000 students on the campus.

The Research Faculties are divided into two domains: communications and digital
systems. Themes of research in communications include Antenna options, GaAs
microwave circuits, Opto-electronics for networks, microwave measure units and radio
astronomy. Research themes in Digital Systems are Image Processing, CAD for VLSI,
Medical Instrumentation and Neural Systems.

Introduction to VHDL

8

1.1. Presentation of VHDL

VHDL is an acronym which stands for VHSIC Hardware Description Language. VHSIC
is yet another acronym which stands for Very High Speed Integrated Circuits. The
language has been known to be somewhat complicated, as its title (as titles go). The
acronym does have a purpose, though; it is supposed to capture the entire theme of the
language, that is to describe hardware much the same way we use schematics.

To make designs more understandable and maintainable, a design is typically
decomposed into several blocks. These blocks are then connected together to form a
complete design. Using the schematic capture approach to design, this might be done
with a block diagram editor. Every portion of a VHDL design is considered a block. A
VHDL design may be completely described in a single block, or it may be decomposed
in several blocks. Each block in VHDL is analogous to an off-the-shelf part and is called
an entity. The entity describes the interface to that block and a separate part associated
with the entity describes how that block operates. The interface description is like a pin
description in a data book, specifying the inputs and outputs to the block. The description
of the operation of the part is like a schematic for the block.

ENTITY latch IS
 PORT (s,r : IN BIT;

 q,nq : OUT BIT);
END latch;

In this example the ENTITY statement declare a new component which name is latch,
the PORT statement is used for the declaration of the input and output signal of the
component. This component declaration can be assimilated to a function declaration in a
high level language such as Pascal or C, but you can notice that a VHDL entity allow
more than one output.

ARCHITECTURE dataflow OF latch IS
BEGIN
 q <= r NOR nq;
 nq <= s NOR q;
END dataflow;

The second part of the description, the architecture declaration, is a description of how
the component operates. The dataflow word is use as a description of the architecture, as
far as you can have more then one possible architecture for the same component.

9

1.2. Example in VHDL : PPM emitter and PPM receiver

1.2.1. The PPM signal

PPM (Pulse Position Modulation) is a serial data transmission protocol.

The PPM signal is composed of a reference pulse followed, a few clock cycles later, by
another pulse, the width of this second pulse gives the value sent by the emitter.

The advantage of the PPM signal is that the transmission is very reliable: due to the form
of the signal an error can be detected very easily. This signal is by the way ideal for use
in a very noisy environment.

The disadvantage is that the signal use a huge amount of band-width, in our example it’s
using 16 clock cycles for a 3 bit value, whereas others serial transmissions could use less
than 6 clock cycles.

All this explain why the PPM transmission is chosen for most of the infra red remote
controllers like television or CD-player remote controller.

1.2.2. The PPM emitter

The PPM emitter receive 3 input signals: a 3 bit integer (the value to transmit), an
enabler, and the clock. There is only one output which is the PPM signal itself.

This is declared very simply in the entity declaration of the PPM emitter:

ENTITY ppm IS
 PORT(a : IN BIT_VECTOR (2 DOWNTO 0);
 en : IN BIT;
 clock : IN BIT;
 m : OUT BIT);
END ppm;

Symbol of the ppm

10

The PPM signal is very simple to implement in VHDL, the process is only a 16 clock
cycle loop which generates the reference pulse at first, and sets the signal to one at the
fourth clock cycle, and finally reset it to zero when the input value, here b, is reached.

Here the value is stored in b which is an integer, whereas a is a vector of 3 bits. The
VHDL language is very strict and does not allow you to operate tests between different
types of signals or variables. That’s why b is used here instead of a directly.

PROCESS (clock)
VARIABLE n : INTEGER RANGE 0 TO 15 := 0;
BEGIN

IF clock = '1' THEN
IF en = '1' THEN

IF n = 15 THEN
n := 0 ;

ELSE
IF n = 0 THEN m <= '1'; -- Reference
ELSIF n = 1 THEN m <= '0'; -- Wait until 4
ELSIF n = 4 THEN m <= '1'; -- Set to ‘1’
ELSIF n>4 THEN -- Until a value

IF (n - 4) > b THEN
m <= '0';

END IF;
END IF;
n := n + 1;

END IF;
ELSE -- en = '0'

n := 0;
m <= '0';

END IF;
END IF;

END PROCESS;

1.2.3. The PPM receiver

The PPM receiver is a little bit more complex than the emitter. This time the signal must
be recognised instead of being created. The method used here to recognise the signal is
to store the signal in a 16 bit memory, which is the length of the signal. This memory is
compared to the possible formats of the signal, and when the signal match, we set the
corresponding value to the output.

The PPM receiver have three input signal : the PPM signal itself, an enabler, and the
clock. This time we use 2 outputs : a 3 bit integer which contain the result of the last
match (the transmitted value), and a validation signal, this last signal is necessary
because it announces when the signals match and so is useful to know if the output value

11

of the receiver is the value of the current signal or only the stored value of the last signal.
It can be used too as a flag to check if the transmission occurs and is correct.

ENTITY ppm_receiver IS
PORT(

a : IN STD_LOGIC;
en : IN STD_LOGIC;
clock : IN STD_LOGIC;
val : OUT STD_LOGIC;
b : OUT STD_LOGIC_VECTOR (2 DOWNTO 0)

);
END ppm_receiver;

As previously said, we compare a stored signal to the possible formats. If the signal is
not a possible signal, nothing occurs, but if it matches, the corresponding value is send to
the output, and the val (validate) signal is set to one to announce that a PPM signal has
been successfully received.

ARCHITECTURE stdlogic OF ppm_receiver IS
SIGNAL mem : STD_LOGIC_VECTOR (0 TO 15) := "0000000000000000";

BEGIN
PROCESS (clock)
BEGIN

IF clock = '1' THEN
FOR i IN 0 TO 14 LOOP

mem(i) <= mem(i+1);
END LOOP;
mem(15) <= a;
IF en = '1' AND mem(0 TO 4) = "10001"
 AND mem (12 TO 15) = "0000" THEN

CASE mem(5 TO 11) IS
WHEN "0000000" =>

val <= '1';
b <= "000";

WHEN "1000000" =>
val <= '1';
b <= "001";

. we show only the beginning and the

. end for space reasons
WHEN "1111111" =>
 val <= '1';
 b <= "111";
WHEN OTHERS => val <= '0';

END CASE;
ELSE -- en = '0'

val <= '0';
END IF;

END IF;
END PROCESS;

END stdlogic;

12

1.2.4. Linking the components together

Now we have two components : a PPM emitter and a PPM receiver, but they are useless
if we cannot link them together.

The VHDL allows us to use a VHDL component as a sub-component of another VHDL
component. In order to use them we have to declare the component with their PORT
assignment for the inputs and outputs. This is made just after the ARCHITECTURE
statement.

ARCHITECTURE stdlogic OF ppm_fpga IS
COMPONENT ppm IS

PORT(
a, en, clock : IN BIT;
m : OUT BIT);

END COMPONENT;
FOR ALL : ppm USE ENTITY work.ppm(ver_max);
COMPONENT ppm_receiver IS

PORT(
a, en, clock : IN STD_LOGIC;
val : OUT STD_LOGIC;
b : OUT STD_LOGIC_VECTOR (2 DOWNTO 0));

END COMPONENT;
FOR ALL : ppm USE ENTITY work.ppm(ver_max);

After the declaration of the components, we don’t use a process but set a label followed
by the signal assignment to the ports of the components, i.e. the port mapping. Internal
signals have to be declared to link the component together.

SIGNAL line, valid : STD_LOGIC;
SIGNAL a, b : STD_LOGIC_VECTOR(2 DOWNTO 0);

BEGIN
p0 : ppm PORT MAP(a, pba, clock, line);
P1 : ppm_receiver PORT MAP(line, pbb, clock, valid,b);

The result is equivalent to the result we could obtain with a schematic editor.

13

1.3. Testing the PPM system

1.3.1. The Max+PlusII environment

The VHDL, as any language, needs a compiler. the most popular VHDL compiler is the
compiler provided in the Integrated Development Environment from Altera, called
Max+PlusII. This environment supports many ways to develop hardware components,
like AHDL (Altera Hardware Description Language), or a schematic editor.

The Max+PlusII software provide all the tools necessary for the development of the
Programmable Gate Array (FPGA) chips. Those include a text editor, a schematic editor,
the compiler, a waveform editor, a simulator, and a programmer to download the
program into the chip.

1.3.2. Simulation of the PPM system

In order to simulate a VHDL component we have to create a waveform file. In this file
we declare the value of the input signals, and declare the output signals we want to
simulate. Then we start the simulation.

Simulated signals of the PPM system

The signal a[2..0] is the input value of the PPM emitter, and b[2..0] is the output value of
the PPM receiver. The line signal is the PPM signal on the «line» between the emitter
and the receiver.

14

Some of the memory bits of the PPM receiver are shown on this simulation. We can see
how those bits are evolving during the time corresponding to the value of the PPM
signal.

The valid signal indicate when the PPM receiver detects a «valid» signal. It is useful to
differentiate a long signal from two signals with the same value.

1.3.3. The testing board

The Digital System Laboratory is equipped with a testing kit
for each computer with the Max+PlusII software.

The kit is composed of an Altera board, a logic analyser, and
an oscilloscope.

The Altera board has an Altera EPF8452ALC84 chip which
is used for each project. The memory of this chip is volatile
though it is necessary to use an external EPROM for stand
alone projects.

The board has 4push buttons directly connected to the chip,
2 hexadecimal switches, and 2 hexadecimal displays. Those
last components are accessed using a data bus.

In order to test the PPM system, we used one of the hexadecimal switches as the input
signal for the PPM emitter and a hexadecimal display as the output for the PPM receiver.

Two push button were used as enablers.

All the signals have been forwarded to the logic analyser to watch their state during the
time.

The testing kit

The Spark Generator Board

16

2.1. Study of the Spark Generator

2.1.1 What is a Spark Generator ?

In most vehicle’s petrol engine the explosion is provided by a spark. The classic system
is to generate it when the piston is at the top of its travel within the cylinder, it is said to
be at Top Dead Centre (TDC). It is from here that the angles are measured i.e. it is 0°.

For an optimum explosion, a spark has to occur some time before the Top Dead Centre
to allow the mixture of petrol and air to be burning when the piston reach the Top Dead
Centre. This is known as the advance angle since the spark occurs «in advance of» Top
Dead Centre.

For best engine efficiency, the advance angle is small for low
revolution rates and much larger at high revolution rates.

In this project we use a large plastic box containing an electric
motor and some electronic components, the whole simulate some
aspects of a petrol engine.

With this simulator we set the advance angle at 10 degrees at 3
revolutions per second and about 26 degrees at 10 revolutions
per second, with a linear angle between these two rotation rates.

2.1.2. Tests with the 68HC11

The Digital Systems Laboratory has a complete set of software and hardware package to
use the popular Motorola’s 68HC11 microcontroller chip.

The software used are :
• Programmer’s File Editor (PFE) to enter and edit the C program (source) files
• C68 compiler to translate C to 68HC11 runnable (hex) files
• Download to move the hex file into the 68HC11 memory
• HyperTerminal to communicate with the 68HC11

The advantage of the 68HC11 is that we can use the testing board to perform real time
test quickly thanks to the C compiler.

The engine simulator

17

In the following C source code, we can see the algorithm used to calculate when the next
spark must be generated, as we can see the complexity of the equations used. As far as
the floating point format can't be used because it's slow, we have to dispose the equation
so that we avoid the integer range limitation.

for(;;)
{

/* Wait for the next sensor pulse */
while((PortA & 0x01) == 1);
while((PortA & 0x01) == 0);
t2=TcnT; /* Read the current time */
if (t2>t1) rotation=t2-t1; /* Calculate the rotation time */
else rotation=(65535-t1) + t2;
d=(2*(10000/(rotation/100))+22)/7;
t_temp=t2+rotation-rotation/360*d;
Toc1=t_temp; /* Set at this time. */
Toc5=t_temp+4; /* Clear at this time. */
t1=t2;
}

We count the number of clock cycles between each pulse, which calculates the time
duration of a single engine revolution. Here a clock cycle is 8us.

Thanks to the HyperTerminal software we can obtain the result of the calculation in real
time and use it to create a graphic with Microsoft Excel.

Spark Generator

0

5

10

15

20

25

30

35

40

0 20000 40000 60000 80000

Number of cycle per pulse

S
p

ar
k

an
g

le

Measures

Theorical

Average
line

As we can see on the graphic, the measures are very close to the theoretical curve. The
result is obtained with the use of two equations including multiplication and divisions on
integers.

18

2.1.3. Implement the spark for VHLD

But the final purpose is to implement the spark algorithm in VHDL and use an Altera
chip, which is in fact using a pure logic component. The only division with VHDL is a
division by a power of 2, which is in fact the use of a shift register. That means that we
can use only linear equations, and so we have to use an other approach to implement the
spark angle calculation in VHDL.

Another way is to represent the spark angle in function of the number of revolution per
second. In the graphic of this representation, we can see that this representation is linear.

Spark Generator

5

10

15

20

25

30

35

40

0 5 10 15
Revols/s

S
p

ar
k

an
g

le

Theoric

Measures

Average line

We are looking for the spark angle, but the final information in the algorithm is in fact the
time information : «when the spark should occur ?».

 So we represent the time of the spark depending on the duration of a full cycle. The
equation of this representation is : y = 0.9913*x – 794,14

As the use of floating variables was too slow with the 68HC11, it is not possible with an
Altera chip (whereas it could be possible with larger components).

Hopefully 0.9913 is very close to 1 – 1/128, which can be implemented in logic
functions. The resulting equation is : y = x – x / 128 – 8.

19

Spark Generator

y = 0,9913x - 794,14

0

10000

20000

30000

40000

50000

60000

70000

80000

0 20000 40000 60000 80000

When

linear when

y = x - x / 128 - 8

The results diverge for longer cycles, which means in fact slower speed, and so it’s less
critical. The representation spark angle/Number of cycles per pulse show that the angle
error never exceeds 1 degree, which is the best result we can attempt from an integer
calculation.

Spark Generator

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000

N Cycles

S
p

ar
k

A
n

g
le

Theoric
Linear (simul)
Series2

The Linear curve represents a first attempt to implement the spark algorithm, which
consisted in partitioning the curve in 3 linear parts. But it proved too difficult to
implement.

The Series2 curve represents the last choice, more simple and in fact more precise.

Cycles before next spark

N cycles

20

2.2. The Spark Generator in VHDL

2.2.1. The components

The basic components used for the VHDL applications are:
• an enabler, to enable or not the others components
• a pulse counter which counts the number of clock cycles between each pulse
• a solver for the equation, to calculate when the spark must occur
• a spark generator, which generates the spark when necessary
• a PWM generator to modulate the speed of the engine from the board
• a BCD counter, used for the two 7 segment displays and evaluate the speed

The clock used is a 8 MHz clock, so we use 2 clock dividers, to obtain the appropriate
clock rate, which is 10 kHz.

2.2.2. The main component

All the VHDL components created are merged in one main file which is represented by
this schematic :

Spark generator : symbolic representation

Finally the component uses 4 input pins and 16 output pins.

21

2.3. The Spark Generator Board

Of course the Altera chip is not efficient alone. So we made a
board with various components :
• 3 switches for main_reset, main_en, and speed_en
• a hexadecimal switch, for the PWM generator
• a 8 MHz clock
• a serial EPROM
• a byteblaster socket, to configure the chip
• an input/output socket to connect the engine simulator

The technique used for wiring the board is the wire wrapping method. This is faster to
create a prototype board than the classic boards, and the possible future modifications
are limited to the physical dimensions of the board.

After a few corrections in the wire wrap connections, and the inversion of the polarity of
the displays, the board is working perfectly. A few tests are performed on the board and
show that the spark angle correspond to the theoretical value.

The Spark Generator Board
and the Engine Simulator

The Spark Generator Board

The Path Finder Robot

23

3.1. Study of the Path Finder Robot

3.1.1. The purpose of the robot

The robot has to find a path across a wall. The robot simply moves forward, if it hits a
wall moves backward, turn right, moves forward for short distance, turn left and moves
forward again. The robot operates this loop until it find a path, i.e. a hole or a door, and
then stops.

The robot finding it’s path

The robot is a first approach of more complex robots which
can have many applications, the Electronic Engineering
Laboratory has built a lots of different Mazemouse robots.
The purposes of these robots are to find their way in an
unknown labyrinth, there are famous micro-mouse
competition in England.

More information available at the following URL :
http://www.ukc.ac.uk/electronics

Normally the robots are controlled by a microprocessor, the most current is the 68HC11.
This is due to the fact that a robot has to operate complex tasks.

But for this project we will use VHDL, even if it’s not the easiest approach, to show that
pure logic is able to control a sequential process efficiently.

The Kim3 robot built in 1994

24

3.1.2. The Finate State Machine (FSM)

For sequential real-time system we use a Finate State Machine representation which
represent the different states of the machine and which variables create the transition
from a machine to an other one.

The FSM of the robot

Forward_look

Backward

Idle

Rotate_r
Forward

Rotate_l

sensor

mvt_done

mvt_done

mvt_done

mvt_done

start

start

start
start

start

start

mvt_done

At the beginning the robot is in an Idle state and waits for the start button to be pushed.
Then the first state is Forward_look, the robot moves forward until it finds a wall or it’s
movement is done. If the movement is done, the robot goes back in the Idle state, but if
the front sensors detect an obstacle, the robot state machine goes to the next state. The
next states create a loop because the robot goes from a state to the next one when the
movement is done, this continues until the movement is done in the Forward_look state,
then the robot stop.

Each state has a condition on the start push button to stop the robot at any time.

3.1.3. Choice of the hardware

As previously said the robot will be controlled by an Altera device programmed in
VHDL.

For the movement we choose to use DC electrical motors, the same as the remote
controlled cars, they are big enough to move the robot and carry the batteries.

An important part of the control of the robot is based on it’s ability to evaluate the
distance reached. The first approach was to use encoded optical wheels linked to the
motors, but for mechanical reasons it was difficult to implement, moreover it’s not

25

accurate at all as far as the vibrations will create undesirable pulses and the distance will
not be real.

Another idea was to use a PC mouse. The advantages are that it is very accurate and it
can avoid the effect of vibrations thanks to the two ways counting technique used, so it
can detect if the robot is going either forward or backward.

A PC mouse is normally plugged into the serial port of a computer, in our case we can’t
use a serial link, we need to take the pulses directly inside the mouse. The pulses were
TTL compatible, and so useable with the Altera device.

The mouse works with two power supplies +5V and –12V, so the robot has to provide
both.

After a few tests using the 68HC11 board, the mouse reveals to be very accurate and the
value obtained for the distance we want to use are around the value 1000, so we need to
use at least 12 bits signed counters. In practice we used 16 bit counters, but we could
change the size of those counters in the VHDL.

The mouse in place under the robot

3.2. The VHDL part

3.2.1. The components

The basic component used for the VHDL applications are :
• a main component which control the states of the robot
• a controller which control the motors and check if the movement is done

26

• two mouse counters to count the relative X and Y position of the robot

Here the clock rate is not really important, so we don’t have to use any clock divider.

3.2.2. The main component

All the VHDL components created are merged in one main file which is represented by
this schematic :

Spark generator : symbolic representation

Even if there are less components than with the Spark Generator, there are more inputs
and outputs.

There are 9 inputs and 7 outputs.

27

3.3. The physical part

We cannot drive the motors directly from the
Altera chip, so we need various components :
• a switch for the power
• a push button as start
• a 8 MHz clock
• a serial EPROM
• a byteblaster socket, to configure the chip
• two 6V batteries
• a +5V regulator (MAX603)
• a –12V regulator (MAX764) for the mouse
• a bridge driver (L6204) to drive the motors
• an input/output socket to connect the mouse and the sensors
• a socket to connect the motors

The technique used for this board is still the wire wrapping method.

The robot didn’t work immediately, and it appears that the bridge driver needed at least
12V to work.

After adding a second 6V battery and placing the batteries on both sides of the robot to
be equilibrate the robot start, but was going only forward and backward and never
turned.

After a simulation of the counter, it appears that the counters did not count whereas the
VHDL code appeared correct. This error is due in fact to a bug in the Max+PlusII
compiler.

Those errors are difficult to anticipate and I spent two days finding an error in the project
where the compiler was at fault.

After some modification in the code, the compiler agreed to compile the counters
correctly.

Now the robot is doing it’s sequence in the good order : forward, backward, turn right,
forward, turn left, forward again until a path.

But those movement are not made correctly : the distances are wrong.

The Robot board

28

Sometime the robot moves forward for a short distance then and stops, but sometimes
does not.

When the robot turns the angle, which should be 90 degrees, but can be less or the robot
can turn on itself for a long time (which looks funny).

In fact the counters, which maybe counting correctly now, are disturbed by the noise
generated by the electric engines.

A solution would be to separate the engine power from the components power, to reduce
the noise.

The robot on it’s way.

29

CONCLUSION

During this work experiment, I have realised three interesting projects. Even if the robot
need some more improvement, all the projects are working correctly.

The use of the VHDL language was an improvement and followed the learning of C and
GAL languages, that I learned too use during my two years of DUT.

The first project was a good practice of the design of serial transmission, already studied
at the IUT.

The robot and the Spark Generator Board were very interesting for their real time
purpose.

I can say that the courses provided at the IUT helped me a lot to accomplish my job.

I have enjoyed the experience of a working experiment in England, and so it could help
to find a job more easily during the future, in France or in a foreign country.

Annexes

